Confining light on a chip:

the science of optical microresonators

Like a tuning fork for light, optical resonators have a characteristic set of frequencies at which it is possible to confine light waves. At these frequencies, optical energy can be efficiently stored for lengths of time characterized by the resonator Q factor, roughly the storage time in cycles of oscillation.

In the last ten years there has been remarkable progress in boosting this storage time in micro and millimeter-scale optical resonators. Chip-based devices have attained Q factors of over 1 billion and micro-machined crystalline devices have achieved Qs exceeding 100 billion. 

The long, energy-storage time and small form factor of these ultra-high-Q (UHQ) resonators enable access to an amazingly wide range of nonlinear phenomena and creation of laser devices with remarkable properties. Also, new science results from radiation-pressure coupling of optical and mechanical degrees-of-freedom in the resonators themselves.

We have created the highest Q-factor chip-based resonators and also launched many of the subjects of study in this field. 

Our mission is to explore UHQ physics, investigate applications and create integrated UHQ systems.

Photomicrograph of whispering gallery optical resonators on a silicon wafer. These resonators have Q factors of nearly 1 billion, the current record for chip-based devices.
Credit: Hansuek Lee